
8 The Delphi Magazine Issue 43

by Julian Bucknall

A
lg

or
it

h
m

s

A
lfresco

Follow Me, Follow You
In which we look at skip lists, a useful
but little known sorted structure

Last year I finally joined the
Association of Computing

Machinery (ACM). I’d been mean-
ing to for a while and the existence
of this column and its monthly
deadline was prompting me to do
more and better research for the
more esoteric algorithms so that I
could present them to you. After
all, there are only so many begin-
ning algorithms out there. Anyway,
the ACM has academic papers you
can download for free, and it
wasn’t long after I’d joined when I
came across a variant of a skip list,
a favorite structure of mine. Of
course, if I’m to describe a variant, I
must describe the original first and
the skip list structure follows
nicely from last month’s Algorithms
Alfresco column on linked lists.

So let’s consider skip lists.

It’s Gonna Get Better
With a doubly linked list, if we
wanted to find a particular item in
the list, we had to start at the begin-
ning and walk the list, following the
Next pointers one by one until we
found the item we were looking for.
A sequential search in other
words. If the list was sorted, we
could employ a binary search tech-
nique to minimize the amount of
comparisons we were doing, but
still we had to follow the Nextpoint-
ers in the list. I showed last time
that even with binary search in the
worst case we had to follow n Next
pointers for n nodes in the list. Is
there any way we could do better
than this?

William Pugh, in his 1990 paper
Skip Lists: A Probabilistic Alterna-
tive to Balanced Trees, showed that
there was.

The paper’s title already gives us
some food for thought. Probabilis-
tic? Balanced Trees? The latter I
shall be covering in a later
instalment of Algorithms Alfresco,
the former we’ll be dealing with in a
moment.

What Pugh invented was a linked
list, but one that was a little out of
the ordinary to say the least. At its
lowest level it is a doubly linked
list, with a forward link to the next
node in the list and a backward link
to the previous. However, for this
structure he made some nodes
with another forward link that
pointed to a node that was several
nodes in front. This link skipped
over a whole bunch of other nodes.
He then made some of these nodes
have yet another forward link that
jumped even further ahead. And
then again some of these nodes had
another link that skipped over
even more nodes. The structure
looks a little like Figure 1. Notice
that eventually all links end at the
tail node, and that the head node is
the start for all forward links at
every level.

Of what use is this structure? If
the items in the list were unsorted,
it would be pretty useless. To find
an item you’d still have to visit
every single node and the extra
links are worthless: they just take
up space. On the other hand, if the
items were sorted, you’d be able to
jump over huge swathes of them,
gradually taking smaller and
smaller jumps, zeroing in on the
item you’re looking for. A bit like
binary search in a way. We’ll
describe this process a little more
rigorously in a moment.

So point one to recognize is that
a skip list is a container that stores
items in a sorted order.

➤ Figure 1: A skip list.

This makes the latter part of the
title of Pugh’s paper a little more
understandable. Binary search
trees (ie, binary trees that store
items in sorted order) have a
major problem. Inserting a bunch
of items in sorted order causes the
tree to break down into a linked
list. Instead of being nice and
bushy, the tree becomes long and
spindly or twiggy. The good log n
search times of the tree deterio-
rate into a linear process instead.
To counteract this there are sev-
eral varieties of balancing algo-
rithms for insertion and deletion
from binary trees, all designed to
make them more bushy. But, of
course, these balancing algo-
rithms slow down those opera-
tions. Pugh was therefore
comparing skip lists to balanced
binary search trees to store sorted
information.

Way Of The World
If you look again at Figure 1, you’ll
notice that there is a doubly linked
list at level 0, a singly linked list at
level 1 that skips over single nodes
(ie, it links every second node),
another singly linked list at level 2
that skips over three nodes (ie, it
links every fourth node), and
another singly linked list at level 3
that skips over seven nodes (ie, it
links every eighth node). To find
the node named g we could follow
the link at level 2 from the head
node to node d, then the link at
level 1 to node f, and then the link
at level 0 to get to node g. Hence, in
theory, we only need to follow 3
links to get to that seventh node.

OK, so much for theory, what
about in practice? How would we

10 The Delphi Magazine Issue 43

find g? The algorithm works like
this:

1. Set a variable called
LevelNumber to the highest level of
links in our skip list (we assume
that we made a note of this through
all our inserts and deletes as we
built up the skip list).

2. Set a variable called Before
Node to the dummy head node.

3. Compare the node reached
by following the forward link at
level LevelNumber from BeforeNode
(call this node NextNode.)

4. If NextNode is the one we
want, we’re finished.

5. If NextNode is less than the
one we want, then the latter must
be beyond NextNode, so set
BeforeNode to NextNode, and
continue at step 3.

6. If NextNode is greater than
the one we want, the node we want
is in between BeforeNode and
NextNode. We decrease LevelNumber
by one (ie, we want to reduce the
number of nodes we skip over).

7. If the LevelNumber is 0 or
greater, we continue at step 3.

8. Otherwise the item we seek
is not to be found in the skip list
and, if we were to insert it, it would
appear in between BeforeNode and
NextNode.

Following this algorithm to find g
we would start at level 3 and the
head node. Follow the link at level 3
from the head node and we get to
node h. We compare and h is
greater than g. We therefore drop a
level and start over. Follow the link
at level 2 from the head node and
we get to node d. Compare. d is less
than g so we advance to node d.
Follow the link at level 2 again and
we get to h. Compare, it’s larger,
therefore we drop a level. Follow
the link from d at level 1 and we
reach f. This is smaller so we
advance. Follow the link at level 1
and we reach h again which is
greater. So we drop a level again
and follow the link to finally reach
g.

In doing so, we have followed 6
links and made 6 comparisons.
This doesn’t sound too hot; after
all, if we were using a simple
doubly linked list without a binary
search we would have followed 7
links and made 7 comparisons.

However, Figure 1 makes an
assumption that I said nothing
about: that a link at level n+1 jumps
a distance twice that of level n. But
why should it? Why not three times
as far, or four, or five? Indeed, that
is the plan. In our skip list we shall
jump four nodes at a time for level
1, 16 (ie, 4x4) for level 2, 64 (ie, 43)
for level 3, and 4n for level n.

The reason for choosing four as
our multiplier is that we have to
balance the need for jumping
major distances at high levels
versus the length of the slow level 0
search at the end. Four is a good
compromise.

Listing 1 shows the search rou-
tine for a skip list, implementing
this algorithm.

Deep In The Motherlode
The next question we should ask is,
to how many levels should we
allow the skip list to grow? Think
about it for a moment. If we assume
that an item we are storing in the
skip list is a pointer (much as we
did in February’s column with
linked lists) then nodes at level 0
are at least 12 bytes in size (one

type
PslNode = ^TslNode;
TslNodeArray = array [0..pred(MaxSkipLevels)] of PslNode;
TslNode = packed record
slnData : pointer;
slnLevel: longint;
slnPrev : PslNode;
slnNext : TslNodeArray;

end;
function TaaSkipList.Search(aItem : pointer) : PslNode;
var
Level : integer;
Walker : PslNode;
Temp : PslNode;
CmpResult : integer;

begin
{initialize}
Walker := FHead;
Level := MaxLevel;
{start zeroing in on the item we want}
while (Level >= 0) do begin
Temp := Walker^.slnNext[Level];
if (Temp = FTail) then
{pretend that the tail's data is greater than our item}
CmpResult := 1

else
{compare the next node's data with our item}
CmpResult := FCompare(Temp^.slnData, aItem);

if (CmpResult = 0) then begin
{if equal then we found the item}
Result := Temp;
Exit;

end;
if (CmpResult < 0) then begin
{if less than, then advance the walker node}
Walker := Temp;

end else begin
{if greater than, save the before node, drop down a level}
dec(Level);

end;
end;
{if we reach this point, the item is not in the skip list}
Result := nil;

end;

➤ Listing 1: Searching for an item in a skip list.

data pointer, one forward pointer,
one backward pointer), nodes at
level 1 are 16 bytes in size (now
two forward pointers), at level 2
they’re 20 bytes in size and so on.
Hence at level n nodes are at least
4n+12 bytes in size. If we go as far
as level 16 (say) then the nodes at
that level will be 76 bytes large.
Admittedly, they’ll be jumping for-
ward 416 nodes (4 billion) at that
stage. Which of course should
strike you forcibly between the
eyes: the machines you and I pro-
gram on just can’t have that many
nodes. Win32 allows applications
much less than 4 billion bytes to
play around in (let alone nodes).
Hence we can safely limit the levels
to a maximum of 16, numbered 0 to
15. At the top level we’ll be jumping
to the billionth node in front, and I
doubt we’ll ever get close to that.
Note that I kept saying ‘at least’ in
the discussion about node sizes.
That’s because each node will
have to have an extra field: the size
of the node or maybe the level for
which the node is for. We could
easily use a byte for this, but
because of the way that 32-bit

12 The Delphi Magazine Issue 43

processors work, and because of
the way the Delphi heap manager
works, it’ll be just as easy, and
better, to use a full integer (or
longint).

I’m sure that some of you are
wondering by now how on earth
we are going to build this
extremely regular structure
through a series of random inser-
tions and deletions. Well, here’s
the kicker: we don’t. We finally
come to the final puzzling word in
Pugh’s title: Probabilistic.

The cleverness of Pugh’s algo-
rithm is that he realized that it was
impossible (or rather, much too
long-winded and time-consuming)
to build the regular structure, so
he proposed building a structure
that on average approximated to
the regular structure. Look back at
Figure 1 for an example. In the first
part of this regular skip list we have
8 nodes, a to h. Ignoring h for the
moment, one of these nodes is at
level 2, two at level 1 and four at
level 0. In other words, picking a
node at random, we can calculate
that it is at level 0 with probability
0.5, at level 1 with probability 0.25,
at level 2 with probability 0.125 and
so on.

Pugh’s algorithm for insertion in
a skip list replicates these proba-
bilities, so that overall, there are
approximately the right numbers
of nodes at each level. The results
of the algorithm are probabilistic.
This means that, on average, the
probabilistic skip list will work
with the same efficiency as the fully
‘regular’ skip list: some nodes will
take longer to find, some a shorter
time, but, averaged out, the proba-
bilistic skip list performs the same
as its regular cousin.

Many Too Many
So, with this information, we can
now describe the insertion algo-
rithm. But first we need to describe
how to create a skip list and what
data we need to store about it. To
create a skip list we allocate a node
of level 15 for a dummy head node
and a node of level 0 for a dummy
tail node. All of the forward point-
ers in the head node are set to
point to the tail node. The tail
node’s backward pointer is set to

point to the head node. We also
need to track the maximum level
currently used by the skip list (we
can set this to zero at creation
time). Of course, with all this allo-
cation and stuff, it’s crying out for a
class implementation, and we’ll
certainly write one, but we won’t
go there just yet.

The insertion algorithm can now
be shown. There are a total of ten
steps.

1. Perform the search algo-
rithm to find the item we are about
to insert, with one extra caveat.
Every time we need to descend a
level, store the value of BeforeNode
before doing so. We’ll end up with a
set of values of BeforeNode, one for
each level (since we’ve limited the
number of levels, we can use a
simple array for this, one node per
level).

2. If the item is found, raise an
error (we’ll discuss why in a
minute).

3. If the item is not found, we
know between which two nodes we
have to insert the item. Plus, we
know that we reached level zero
during the search.

4. Set a variable called
LevelNumber to zero.

5. Using a random number
generator, calculate a random
number between 0 and 1.

6. If the number is less than
0.25, increment LevelNumber.

7. If LevelNumber is less than or
equal to the current maximum
level for the skip list (or 15) return
to step 5.

8. If LevelNumber is greater
than the current maximum level
for the skip list, set this latter value
to LevelNumber.

9. Create a node of level
LevelNumber and set its data pointer
to our item.

10. Now the fun stuff: we have to
insert this node into the links at all
levels up to LevelNumber (and that’s
why we stored all those values of
BeforeNode during the search in
step 1). This is merely applying the
‘insert after’ method for the doubly
linked list at level 0, and for the
singly linked lists at levels 1 to
LevelNumber (for a discussion of
this, see the February 1999 Algo-
rithms Alfresco column).

There are a couple of weird
things happening in this algorithm
that need a little further explana-
tion. Steps 5, 6, 7 and 8 for example:
what’s all this about? Well, what’s
happening here is that we’re calcu-
lating the level that this new node
is to have (how big it is, essen-
tially). In our skip list we have a
skip factor of 4. In other words, 3

4

of the nodes must be level 0 (or to
put it another way 1

4 of the nodes
must be level 1 or greater), 3

16 of
the nodes level 1 (or to put it
another way 1

16 of the nodes must
be level 2 or greater), 3

64 of the
nodes level 2 and so on. We also
don’t want to expand the maxi-
mum level of the skip list too much:
it should only increase by one level
at a time (think about the ‘regular’
skip list again: if only 3 items are
inserted in the list, a, b, c, the maxi-
mum level is 1, whereas in our
probabilistic skip list we could get
a maximum level of 15 with a bit of
luck). So that’s what steps 5
through 8 are doing.

Step 2 also bears some explana-
tion. What it basically says is that a
skip list cannot have duplicate
items (or rather items that com-
pare equal). Why? Imagine a skip
list just containing 42 nodes of
value a, what does it mean to
search for item a? Because of the
nature of the skip list we’ll jump
over a whole bunch of them in the
first step of the search algorithm
to, say, the 35th. We found a! We
didn’t find the first one, or the last,
but we did find one. Should we add
a few steps to the algorithm to walk
backwards until we don’t find any
more occurrences of a (and hence
find the first one)? Or forwards for
that matter. Some would say that
we ought to add them in the order
they arrived (so when we insert we
should insert at the end of the list
of duplicates, and when we search
we should find the first). This just
makes the algorithm messier and,
in my view, the extra complexity is
unnecessary.

Presumably, if we want to add
duplicate items, we know how to
differentiate them, otherwise they
truly are the same item. If we can
differentiate them then presum-
ably the comparison function

March 1999 The Delphi Magazine 13

should as well. Ergo, they are no
longer duplicates.

Illegal Alien
Having talked about insertion, we
need to talk about deletion of a
node. This is fairly easy, if long
winded. Let’s imagine that we want
to delete node d in Figure 1. If you
look at it, we’ll need to fix up three
forward links (d is at level 2) and
one backward link. Eventually,
we’ll have a link at level 2 between
the head node and h, a link at level
1 between b and f, and two links
between c and e, one forwards and
one backwards. The algorithm
goes like this.

1. Find the item we wish to
delete by the usual method.

2. Assume we find it at level i.
Save the node before the one we
want to delete as the ith item in an
array. Set LevelNumber to i, and the
node before in BeforeNode.

3. Decrease LevelNumber by
one.

4. If LevelNumber is negative,
continue at step 7.

5. Starting at BeforeNode,
follow the links on level
LevelNumber until we reach the item
again. As we walk the links keep a
note of the parent of each node.

6. Store the node before the
one we wanted in the array, set
BeforeNode to this node. Continue
at step 3.

7. We now have an array of
prior nodes from level i down to 0.
Perform the usual linked list ‘de-
lete after’ operations on each level.

Step 5 is guaranteed to work (we
are guaranteed to always find the
item we want at every level)
because a node at level n has a link
at each level up to n pointing to it.

Undertow
Can we write our class now?
Ordinarily, yes, but given the
discussion we had last month
about node managers, should we
(can we?) do the same here? A
smidgeon more difficult this time
because different nodes are differ-
ent sizes, but the answer is still yes
to both questions. Recall the
original requirement for a node
manager: we were always allocat-
ing and freeing nodes of the same
size, so we decided that allocating
a batch of nodes and then doling
them out as required would be
faster than using the Delphi heap
manager. Our node manager this
time will have to track 16 different
node sizes instead of one. The first
node size is 16 bytes (one data
pointer, two pointers, one forward
and one back, and a level number),
the second 20, the third 24, all the
way up to the sixteenth node size
of 76 bytes (of which we won’t
allocate all that many!). When we
allocate or free a node we pass an
extra parameter detailing which
level the node is for. The node man-
ager has an array of free lists, one

for each node size (and also an
array of pages lists) and each list is
managed independently. The code
in Listing 2 shows the node
manager for skip lists. You can
compare this to February’s
versions.

There’s one small problem,
though, with the skip list node
manager that’s not so readily
apparent with the linked list man-
agers from last month. The prob-
lem is one of thrashing and
becomes obvious when you have
millions of nodes. Win32 will utilize
a swap file when real memory gets
scarce, in other words, memory
pages will get swapped to and from
disk. The thing about the skip list
node manager is that neighboring
nodes in the skip list will be from
different memory pages. If you
sequentially walk the skip list from
start to finish, you will come
across nodes of different sizes
(and hence from different memory
pages) as you go, causing page
swaps to occur. There’s not a lot
we can do about this (and indeed,
if we are using millions of nodes,
the items for those nodes will be
on different memory pages
anyway) apart from using the stan-
dard Delphi heap manager (which
also will produce nodes that will
suffer from thrashing in low
memory conditions). The code on
the diskette allows you to switch
heap management from the node
manager to the Delphi heap
manager.

const
NodeSize : array [0..pred(MaxSkipLevels)] of integer =
(16, 20, 24, 28, 32, 36, 40, 44,
48, 52, 56, 60, 64, 68, 72, 76);

type
PslnmPage = ^TslnmPage;
TslnmPage = packed record
slnmpNext : PslnmPage;
slnmpSize : longint;
slnmpNodes : TByteArray;

end;
var
slnmFreeList : TslNodeArray; {a free list per node size}
slnmPageList : PslnmPage;

procedure slnmFreeNode(aNode : PslNode; aLevel : integer);
begin
{$IFDEF UseNodeManager}
{add the node to the top of the correct free list}
aNode^.slnNext[0] := slnmFreeList[aLevel];
slnmFreeList[aLevel] := aNode;
{$ELSE}
FreeMem(aNode, NodeSize[aLevel]);
{$ENDIF}
end;
procedure slnmAllocPage(aLevel : integer);
var
NewPage : PslnmPage;
i : integer;
PageSize: integer;
Offset : integer;

begin
{get a new page}
PageSize := sizeof(pointer) + {the slnmpNext field}
sizeof(longint) + {the slnmpSize field}
(PageNodeCount * NodeSize[aLevel]); {the nodes}

GetMem(NewPage, PageSize);
NewPage^.slnmpSize := PageSize;
{add it to the current list of pages}
NewPage^.slnmpNext := slnmPageList;
slnmPageList := NewPage;
{add all the nodes on the page to the free list}
Offset := 0;
for i := 0 to pred(PageNodeCount) do begin
slnmFreeNode(@NewPage^.slnmpNodes[Offset], aLevel);
inc(Offset, NodeSize[aLevel]);

end;
end;
function slnmAllocNode(aLevel : integer) : PslNode;
begin
{$IFDEF UseNodeManager}
{if the free list is empty, allocate a new page of nodes}
if (slnmFreeList[aLevel] = nil) then
slnmAllocPage(aLevel);

{return the first node on the free list}
Result := slnmFreeList[aLevel];
slnmFreeList[aLevel] := Result^.slnNext[0];
{$ELSE}
GetMem(Result, NodeSize[aLevel]);
{$ENDIF}
Result^.slnLevel := aLevel;

end;

➤ Listing 2: The node
manager for skip lists.

14 The Delphi Magazine Issue 43

So we can now finally write our
skip list class. I won’t show you all
the code here; that’s what the dis-
kette is for, after all. However, List-
ing 3 does show the insertion and
deletion code since that’s the most
interesting bit, the rest being just
housekeeping. The slSearchPrim
routine (which is not shown)
merely performs a search for an
item based on the code in Listing 1
and builds up a BeforeNodes array
of prior nodes as it drops from
level to level.

Throwing It All Away
Having described the standard
probabilistic skip list, let’s have a
look at the variant I found in a
paper called Deterministic Skip
Lists by Munro, Papdakis and
Sedgewick. They describe two
variants but I’ll be showing only
one, the one they called the 1-2 skip
list.

In Pugh’s skip list, he got around
the problem of not being able to
create the regular skip list by pro-
viding the approximate balance
between node sizes in a probabilis-
tic way. In a 1-2 skip list, Munro,
Papdakis and Sedgewick provide
the approximate balance in an
algorithmic way. In their 1-2 skip
list, they relax the regular rule

slightly by saying that between any
two nodes at level n there must be
either one or two nodes at level n-1
(obviously this doesn’t apply to
level 0 nodes). Hence the name.
The regular skip list in Figure 1 can
be viewed as a 1-2 skip list because
in between two nodes at a particu-
lar level there is exactly one node
at the next level down.

The search algorithm for a 1-2
skip list remains the same. After all,
it doesn’t depend on how the skip
list was constructed, it just expects
the nodes to be sorted and
assumes that some of them are
larger than others in order that it
can do the rapid skips. It’s only
during insertion and deletion that
we need worry about maintaining
this 1-2 rule.

Let’s take insertion first. How do
we maintain the rule? Firstly we
search for where the node should

be inserted. Create a level 0 node
at that point. This may cause the
rule to be broken, since there may
now be three level 0 nodes in a
row. No problem. Grow the middle
node of the three to a level 1 node.
This may, in its turn, cause a viola-
tion of the rule at level 1. Again no
problem, just grow the middle
node of those level 1 nodes to level
2. And so on and so forth. Even-
tually the grown node will not
cause a violation of the rule and
everything is all right again. I’m
sure you can see that we may have
grown the maximum level of the
skip list if we manage to go all the
way up. Inserting c into the 1-2 skip
list of Figure 2 will cause the b node
to grow to level 1, which in turn
causes the d node to grow to level
2. Figure 3 is the result.

function TaaSkipList.Delete : pointer;
var
i, Level : integer;
Temp : PslNode;
BeforeNodes : TslNodeArray;

begin
{search for the item and create the BeforeNodes array}
slSearchPrim(FCursor^.slnData, BeforeNodes);
{the only valid before nodes are from the skip list's
maximum leveldown to this node's level; we need to get
the before nodes for the others}
Level := FCursor^.slnLevel;
if (Level > 0) then begin
for i := pred(Level) downto 0 do begin
BeforeNodes[i] := BeforeNodes[i+1];
while (BeforeNodes[i]^.slnNext[i] <> FCursor) do
BeforeNodes[i] := BeforeNodes[i]^.slnNext[i];

end;
end;
{patch up the links on level 0 - doubly linked list}
BeforeNodes[0]^.slnNext[0] := FCursor^.slnNext[0];
FCursor^.slnNext[0]^.slnPrev := BeforeNodes[0];
{patch up the links on the other levels - all singly
linked lists}
for i := 1 to Level do begin
BeforeNodes[i].slnNext[i] := FCursor^.slnNext[i];

end;
{reset cursor, dispose of the node}
Result := FCursor^.slnData;
Temp := FCursor;
FCursor := FCursor^.slnNext[0];
slnmFreeNode(Temp, Level);
{we now have one less node in the skip list}
dec(FCount);

end;

procedure TaaSkipList.Insert(aItem : pointer);
var
i, Level : integer;
NewNode : PslNode;
BeforeNodes : TslNodeArray;

begin
{search for the item and create the BeforeNodes array}
if slSearchPrim(aItem, BeforeNodes) then
raise Exception.Create(
'TaaSkipList.Insert: duplicate item');

{calculate the level for the new node}
Level := 0;
while (Level <= MaxLevel) and (Random < 0.25) do
inc(Level);

{if we've gone beyond the maximum level, save it}
if (Level > MaxLevel) then
inc(FMaxLevel);

{allocate the new node}
NewNode := slnmAllocNode(Level);
NewNode^.slnData := aItem;
{patch up the links on level 0 - a doubly linked list}
NewNode^.slnPrev := BeforeNodes[0];
NewNode^.slnNext[0] := BeforeNodes[0].slnNext[0];
BeforeNodes[0].slnNext[0] := NewNode;
NewNode^.slnNext[0]^.slnPrev := NewNode;
{patch up the links on the other levels - all singly
linked lists}
for i := 1 to Level do begin
NewNode^.slnNext[i] := BeforeNodes[i].slnNext[i];
BeforeNodes[i].slnNext[i] := NewNode;

end;
{we now have one more node in the skip list}
inc(FCount);

end;

➤ Listing 3: Insertion into and
deletion from a skip list.

➤ Figure 3: Resulting 1-2 skip list after inserting c.

➤ Figure 2: A 1-2 skip list.

16 The Delphi Magazine Issue 43

Those of you who know about
2-3 binary search trees will spot a
similarity here: this is the skip list
equivalent of insertion in a 2-3 tree.
For the rest of you, we’ll be talking
about them in a future article on
binary trees.

From this small description we
have a couple of problems to con-
sider. The first is obvious: growing
the node. Actually this won’t be too
bad with our node manager con-
cept: save the data pointer, free the
node that’s now too small and allo-
cate one that’s one level larger and
restore the data pointer.

The second problem is a little
more intricate. If we have grown a
node, we have to patch up the
linked list at the level of the grown
node. To do this we need to know
the prior node at that level. That’s
not too bad, after all we were doing
similar things for the probabilistic
skip list insertion. The problem,
though, seems to be compounded:
after growing a node and patching

the linked list at that level we need
to count the number of consecu-
tive nodes at that level. For exam-
ple, after inserting c in Figure 2 we
need to count the number of con-
secutive level 0 nodes. Ignoring for
the moment that we are at level 0
(and hence have back pointers) we
need to count from a onwards. But
how do we get to a to start the
count? We know where b is, but we
have no idea how to get to a (or
even if it’s there).

The way round this is to store all
the before nodes at each level as
we are searching for where to
insert the item. To count the
number of consecutive nodes after
growing a node to a given level, get
the before node for the next level
and then count the nodes from that
point at the level we’re interested
in. For our example of inserting c,
we’d find the before node at level 1
(the head node) and then count the
nodes from there for the level 0
nodes, a b c. We grow b to level 1.

Get the before node for level 2 (the
head node again) and count the
level 1 nodes, b d f. We grow d to
level 2. Get the before node for
level 3 (the head node yet again for
our simple example). And then
count the nodes at level 2 from
there, d. We’re done since we
verified the rule at all levels.

Just A Job To Do
Deletion is a little more complex.
We find the node to delete. Delete
it. This may cause a violation of the
rule in two ways. Firstly we may
delete a larger node that is separat-
ing two sequences of lower nodes.
Imagine that nodes a, b, d and e are
all level 0 nodes and node c is a
level 1 node. We delete node c.
This leaves us with four level 0
nodes in sequence, a violation of
the 1-2 rule and one of them must
be grown (note that this growing
node will not cause a violation of
the 1-2 rule since, in essence, it’s
replacing a node of that level, its
neighbor, which has just been
deleted).

Secondly we may delete a
smaller node that is separating two
larger nodes. Imagine nodes a and
c are level 1 nodes and node b is a
level 0 node separating them,
which we delete. The 1-2 rule does
not allow two nodes at higher
levels to be next to each other, so
one of them must be shrunk. This
may in turn cause a violation of the
rule (three in a row) so we need to
grow one of them in a pattern that
you can recognize from the inser-
tion case.

The nice node manager that we
used in the probabilistic skip list
isn’t so useful here. Our skip factor
has reduced from 4 to 2 (or maybe
3). The maximum number of possi-
ble node levels is twice as many,
from 16 to 32. And although having
a node manager managing 32 dif-
ferent free lists is not impossible,
it’s just a lot more complex. We
could reduce the number of free
lists, at the expense of some wast-
age, by having level 0 and 1 nodes
the same size, and level 2 and 3
nodes the same size and so on,
halving the number of free lists.

The advantage of the 1-2 skip list
over its probabilistic sibling is that

Errata
I was just completing this month’s column when I had two email mes-
sages from Father Christmas. He was forwarding a couple of messages
from readers of December 1998’s column who’d tried to use my
implementation of the shuffle algorithm. They’d found the same bug
and Father Christmas had annotated each forwarded message with
an expressive Ha!

The shuffle routine presented in that article declared a local
variable on top of an untyped parameter by using the absolute
keyword:

A : PByteArray absolute aArray;

Well, both Peter Below of TeamB and Simon Mentha discovered that
I’d blown it good and proper. I couldn’t even blame the bug on the
Man in Red either, since I’d expressly said in the article that I’d coded
it. Anyway, the type of A was supposed to be TByteArray, not
PByteArray. Although the routine would compile, it would never run;
at least not without a vile Access Violation. I looked back on my test
programs and discovered that I’d done the unforgivable: I’d ‘tidied
up’ the code after testing it, introduced the bug and never retested.
Argh! Sorry about that.

To make matters worse, Simon pointed out that the routine didn’t
produce a very random looking shuffle. Another bug which I fixed,
the routine didn’t follow the algorithm I’d outlined. All in all, I’m
afraid this was not one of my better efforts. The fully tested and
debugged routine is on this month’s disk.

Now Simon can go back to writing his program to select the six win-
ning lottery numbers!

I’d like to thank them both for their messages and encourage you
to email me or our Esteemed Editor with thoughts, requests and bug
reports about Algorithms Alfresco.

18 The Delphi Magazine Issue 43

its behavior is much more stable.
After all if you think about it in a
hand-waving fashion (ie, I’m not
going to provide formulae!), Pugh’s
original skip list only guarantees
that on average things will work
nicely. Given that we are logically
throwing dice here, we may have a
run of bad luck and have a long run
of nodes at the same level causing
search times to increase. If, horror,
we have a bad random number
generator, the efficiency of the skip
list will deteriorate badly. The 1-2
skip list guarantees better behav-
ior and a more regular look at the
expense of a much deeper skip list
and a more complicated algorithm
for insertion and deletion.

However, I must say that this is
probably only a theoretical advan-
tage. I’ve seen skip lists as
described by Pugh in several data
structures books. I have yet to see
the 1-2 skip list so described.

That’s All
My own tests have shown that skip
lists are a good alternative to bal-
anced binary trees for storing
sorted data. However, since their
behavior can only be described
statistically rather than rigorously,
they are not necessarily the struc-
ture of choice in a general sense.
After all, the implementers of the
C++ Standard Template Library for
various compilers usually code
their associative maps as red-black
binary search trees. Having said
that, I certainly would use skip lists
in situations where I needed to iter-
ate through the items in sorted
order, or where I didn’t have too
many deletions.

And with that we come to the
end of another Algorithms Alfresco
article. Thanks for reading!

Julian Bucknall programs, acts,
goes to the gym but doesn’t do
much skipping. Having lived in the
mountains for 6 years, he’d now
like a home by the sea. He can be
reached at julianb@turbopower.
com
The code that accompanies this
article is freeware and can be used
as-is in your own applications.
© Julian M Bucknall, 1999

	It’s Gonna Get Better
	Way Of The World
	Deep In The Motherlode
	Many Too Many
	Illegal Alien
	Undertow
	Throwing It All Away
	Just A Job To Do
	Errata
	That’s All

